The future of REDD+ - Interpreting FREL/FRL for Post-2020 Framework -

FREL/FRL on UNFCCC –Overview and Analysis of Submitted FREL/FRL-

January 28th, 2016

Environment and Energy Dept.

Analyst

Yoko ASADA (y.asada@murc.jp)

Background –Discussion of REDD-plus in UNFCCC–

Year	COP	Key events and Decisions related to REDD-plus in UNFCCC
2005	COP11	Suggestion from Costa Rica and PNG — Reducing Emissions from Deforestation in Developing Countries
2007	COP13	Bali Action Plan
2010	COP16	Cancun Agreement
2013	COP19	Warsaw Framework for REDD-plus
2105	COP21	Paris Agreement

- Five activities of REDD-plus
 - Reducing emissions from deforestation
 - Reducing emissions from forest degradation
 - Conservation of forest carbon stocks
 - Sustainable management of forests
 - Enhancement of forest carbon stocks
 (1/CP.16)

- Key elements for REDD-plus
 - National Strategy or Action Plan (1/CP.16, 15/CP.19)
 - National Forest Monitoring System (4/CP.15, 1/CP.16, 11/CP.19)
 - Forest Reference Emission Levels and /or
 Forest Reference Levels (FREL/FRLs)
 (4/CP.15, 1/CP.16, 12.CP.17, 13/CP.19)
 - Safeguards Information System (1/CP.16, 12/CP.17, 12/CP.19)

What is FREL/FRLs?

- "... benchmarks for assessing each country's performance in implementing REDD+ activities" (12/CP.17)
- No explanation of difference between FREL and FRL
- Reason why countries establish FREL/FRLs:
 - To access results-based payments
 - To assess progress on the outcomes of the policies and measures for mitigation in the forestry sector
 - To express the country's contribution internationally

Decision related to FREL/FRLs

- Modalities for FREL/FRLs (12/CP.17)
 - Unit: t-CO₂/yr
 - To take into account historical data
 - To maintain consistency with national GHG inventories
 - To provide information and rationale of FREL/FRLs development, including information on national circumstances
 - To take step-wise approach in FREL/FRLs development
 - Sub-national FREL/FRLs as an interim measure
- Guidelines for submissions on information on reference levels (12/CP.17, Annex)
- Guidelines and procedures for the technical assessment of submissions from Parties on proposed FREL/FRLs (13/CP.19, Annex)

Characteristics of FREL/FRLs rules

- Minimum requirements, a lot of flexibility
 - Providing only key words
 - Free interpretation of these words
- Emphasizing incentives for each country
 - Promoting participation of many countries (for avoiding displacement of emissions)
- Not necessary to be consistent internationally, but necessary in the country

Submitted FREL/FRLs

(Process of REDD-plus in UNFCCC)

FREL/FRLs Submission by Countries to UNFCCC

Technical Assessment of FREL/FRLs by experts

⇒ FREL/FRLs are fixed

Submission of the result of REDD-plus implementation in Biennial Update Report

Verification?

Result-based Payment?

[Countries submitting FREL/FRLs]

	Country	Date of submission			
0	Brazil	2014/06/06			
0	Columbia	2014/12/08			
0	Ecuador	2014/12/08			
0	Guyana	2014/12/08			
0	Malaysia	2014/12/08			
0	Mexico	2014/12/08			
	Indonesia	2015/12/09			
	Peru	2015/12/29			
	Costa Rica	2016/01/06			
	Paraguay	2016/01/08			
	Ethiopia	2016/01/15			
	Viet Nam	2016/01/15			
	Congo	2016/01/21			

O: FREL/FRLs have been assessed As of 25th January, 2016

Overviews of assessed FREL/FRLs

Country	Scale	Area [M ha]	Scope of Activity	Carbon pools	Period of FREL/FRLs	FREL/FRLs [M t-CO2/yr]	FREL/FRLs Construction Approach
Brazil	S	419.7	Def	AGB, BGB,	2006-2010	1,106.0	Average of historical emissions
Drazii	B	419.7	Dei	Litter	2011-2016	908.0	
Columbia	S	45.9	Def	AGB, BGB	_	51.6	Average of historical emissions
Ecuador	N	24.9	Def	AGB, BGB, Dead wood, Litter	2000-2008	43.4	Average of historical emissions
Guyana	N	21.5	Def, Deg	AGB, BGB, Dead wood	-	46.3	Average of deforestation rate of Guyana and all over the world
Molorgio	N	33.0	SMF	AGB, BGB, Litter	2006-2010	-183.6	Average of historical
Malaysia					2011-2015	-197.8	emissions/ removals
Mexico	N	197.3	Def	AGB, BGB	2000-2010	44.4	Average of historical emissions

[Scale] N: National, S: Sub-national,

 $[Scope\ of\ Activity]\ Def:\ Avoiding\ Deforestation,\ Deg:\ Avoiding\ Forest\ Degradation,\ SMF:\ Sustainable\ Management\ of\ SMF:\ Sustainable\ Management\ of\ SMF:\ SMF:\$

[Carbon pools] AGB: Above-ground Biomass, BGB: Below-ground Biomass

Overviews of submitted FREL/FRLs

- Points of developing FREL/FRLs
 - Forest Definition
 - Data (Year, number of point)
 - Scope of FREL/FRLs (Selected Activities, Carbon pools, GHG sources)
 - FREL/FRLs Construction Approach
 - Average of historical emissions
 - Simple historical trend such as single regression analysis
 - More complicated analysis such using models, considering national circumstances (population growth, economic growth) etc.
- ◆ Value of FREL/FRLs may be changed depend on applied methodology, especially in those points above.
- ◆ FREL/FRLs are very important for quantifying the effort by each country; for accounting as the National Determined Contributions, acquiring result-based payment.

Overviews of assessed FREL/FRLs

Country	Scale	Area [M ha]	Scope of Activity	Carbon pools	Period of FREL/FRLs	FREL/FRLs [M t-CO2/yr]	FREL/FRLs Construction Approach
Brazil	S	419.7	Def	AGB, BGB,	2006-2010	1,106.0	Average of historical
Drazii	B	419.7	Dei	Litter	2011-2016	908.0	emissions
Columbia	S	45.9	Def	AGB, BGB	_	51.6	Average of historical emissions
Ecuador	N	24.9	Def	AGB, BGB, Dead wood, Litter	2000-2008	43.4	Average of historical emissions
Guyana	N	21.5	Def, Deg	AGB, BGB, Dead wood	_	46.3	Average of deforestation rate of Guyana and all over the world
Malaysia	N	33.0	SMF	AGB, BGB, Litter	2006-2010	-183.6	Average of historical emissions/ removals
					2011-2015	-197.8	
Mexico	N	197.3	Def	AGB, BGB	2000-2010	44.4	Average of historical emissions

Scope

Construction Approach

[Scale] N: National, S: Sub-national,

[Scope of Activity] Def: Avoiding Deforestation, Deg: Avoiding Forest Degradation, SMF: Sustainable Management of Forest [Carbon pools] AGB: Above-ground Biomass, BGB: Below-ground Biomass

Analysis (Technical Issues)

Scope

• Important activities, carbon pools, and GHG sources may be omitted because of technical difficulty.

Case 1: Brazil

Emission from forest degradation, which is 59% of emission from deforestation, is omitted at present.

Case 2: Indonesia

CO₂ emission from peat decomposition is included, but CH₄ and N₂O emissions from biomass burning (e.g. forest fire) are not included, at present.

- How emissions from REDD+ activity, such as agriculture as the alternative livelihood are estimated and accounted? How emissions from REDD+ activity and non-REDD+ activity are identified and separated?
- If sub-national FREL/RELs have different scope, how they are integrated for national level?

Analysis (Technical Issues)

- FREL/FRLs Construction Approach
 - Many countries apply simple approach, such as average of historical emissions/ removals

Analysis (Political Issues in near future)

- Rule making for result-based payment (will be discussed in future COP)
 - Decision of the amount to be paid
 - Measures to avoid double counting
- Allocation of the acquired payment inside the country

Thank you for your attention

Appendix: Overviews of submitted FREL/FRLs

	Country	Scale	Area [M ha]	Scope of Activity	Period of FREL/FRLs	FREL/FRLs [M t-CO2/yr]	FREL/FRLs Construction Approach
0	Brazil	\mathbf{S}	419.7	Def	2006-2010	1,106.0	Average of historical emissions
O	Drazii	ъ	419.7	Dei	2011-2016	908.0	Average of historical emissions
0	Columbia	S	45.9	Def	_	51.6	Average of historical emissions
	Congo	N	34.2	Def, Deg	2000-2012	39.1	Using calculation models based on national development plan
	Costa Rica	S	5.1	Def, Enh	1996-2009	14.3	Average of historical emissions
	Costa Nica	ъ	0.1	Dei, Enn	2010-2025	4.0	Average of historical emissions
0	Ecuador	N	24.9	Def	2000-2008	43.4	Average of historical emissions
	Ethiopia	N	112.7	Def	2000-2013	19.8	Average of historical emissions
	Ешпоріа	IN	114.1	Aff		-10.2	Average of historical removals
0	Guyana	N	21.5	Def, Deg	-	46.3	Average of deforestation rate of Guyana and all over the world
	Indonesia	S	113.2	Def, Peat*	2013-2020	568.9 ~ 593.3	Forest: Average of historical emissions Peat: Historical trend (increasing)
	O M 1 :	ysia N	N 33.0	SMF	2006-2010	-183.6	Average of historical emissions/ removals
0	Malaysia	IN	55.0	SML	2011-2015	-197.8	Average of historical emissions/ removals
0	Mexico	N	197.3	Def	2000-2010	44.4	Average of historical emissions
	Paraguay	N	40.7	Def		$Under\ construction$	_
	Peru	S	78.3	Def	2015-2020	77.6 ~ 93.7	Historical trend (increasing)
	Viet Nam	m N	N	Def, Deg, Ref	_	FREL: 88.2	Average of historical emissions
				Dei, Deg, Ivei		FRL: -70.9	Average of historical removals

References

- UN-REDD (2015) Technical Considerations for Forest Reference Emission Level and/or Forest Reference Level construction for REDD+ under the UNFCCC
- UNFCCC, REDD+ Web platform. http://redd.unfccc.int/fact-sheets/forest-reference-emission-levels.html
- Decisions of the COP http://unfccc.int/documentation/decisions/items/3597.php